319 research outputs found

    Early prediction of upper limb functioning after stroke using clinical bedside assessments: a prospective longitudinal study.

    Get PDF
    Early and accurate prediction of recovery is needed to assist treatment planning and inform patient selection in clinical trials. This study aimed to develop a prediction algorithm using a set of simple early clinical bedside measures to predict upper limb capacity at 3-months post-stroke. A secondary analysis of Stroke Arm Longitudinal Study at Gothenburg University (SALGOT) included 94 adults (mean age 68 years) with upper limb impairment admitted to stroke unit). Cluster analysis was used to define the endpoint outcome strata according to the 3-months Action Research Arm Test (ARAT) scores. Modelling was carried out in a training (70%) and testing set (30%) using traditional logistic regression, random forest models. The final algorithm included 3 simple bedside tests performed 3-days post stroke: ability to grasp, to produce any measurable grip strength and abduct/elevate shoulder. An 86-94% model sensitivity, specificity and accuracy was reached for differentiation between poor, limited and good outcome. Additional measurement of grip strength at 4 weeks post-stroke and haemorrhagic stroke explained the underestimated classifications. External validation of the model is recommended. Simple bedside assessments have advantages over more lengthy and complex assessments and could thereby be integrated into routine clinical practice to aid therapy decisions, guide patient selection in clinical trials and used in data registries

    Consensus-Based Core Set of Outcome Measures for Clinical Motor Rehabilitation After Stroke—A Delphi Study

    Get PDF
    Introduction: Outcome measures are key to tailor rehabilitation goals to the stroke patient's individual needs and to monitor poststroke recovery. The large number of available outcome measures leads to high variability in clinical use. Currently, an internationally agreed core set of motor outcome measures for clinical application is lacking. Therefore, the goal was to develop such a set to serve as a quality standard in clinical motor rehabilitation poststroke. / Methods: Outcome measures for the upper and lower extremities, and activities of daily living (ADL)/stroke-specific outcomes were identified and presented to stroke rehabilitation experts in an electronic Delphi study. In round 1, clinical feasibility and relevance of the outcome measures were rated on a 7-point Likert scale. In round 2, those rated at least as “relevant” and “feasible” were ranked within the body functions, activities, and participation domains of the International Classification of Functioning, Disability, and Health (ICF). Furthermore, measurement time points poststroke were indicated. In round 3, answers were reviewed in reference to overall results to reach final consensus. / Results: In total, 119 outcome measures were presented to 33 experts from 18 countries. The recommended core set includes the Fugl–Meyer Motor Assessment and Action Research Arm Test for the upper extremity section; the Fugl–Meyer Motor Assessment, 10-m Walk Test, Timed-Up-and-Go, and Berg Balance Scale for the lower extremity section; and the National Institutes of Health Stroke Scale, and Barthel Index or Functional Independence Measure for the ADL/stroke-specific section. The Stroke Impact Scale was recommended spanning all ICF domains. Recommended measurement time points are days 2 ± 1 and 7; weeks 2, 4, and 12; 6 months poststroke and every following 6th month. / Discussion and Conclusion: Agreement was found upon a set of nine outcome measures for application in clinical motor rehabilitation poststroke, with seven measurement time points following the stages of poststroke recovery. This core set was specifically developed for clinical practice and distinguishes itself from initiatives for stroke rehabilitation research. The next challenge is to implement this clinical core set across the full stroke care continuum with the aim to improve the transparency, comparability, and quality of stroke rehabilitation at a regional, national, and international level

    European evidence-based recommendations for clinical assessment of upper limb in neurorehabilitation (CAULIN): data synthesis from systematic reviews, clinical practice guidelines and expert consensus

    Get PDF
    Background: Technology-supported rehabilitation can help alleviate the increasing need for cost-effective rehabilitation of neurological conditions, but use in clinical practice remains limited. Agreement on a core set of reliable, valid and accessible outcome measures to assess rehabilitation outcomes is needed to generate strong evidence about effectiveness of rehabilitation approaches, including technologies. This paper collates and synthesizes a core set from multiple sources; combining existing evidence, clinical practice guidelines and expert consensus into European recommendations for Clinical Assessment of Upper Limb In Neurorehabilitation (CAULIN). Methods: Data from systematic reviews, clinical practice guidelines and expert consensus (Delphi methodology) were systematically extracted and synthesized using strength of evidence rating criteria, in addition to recommendations on assessment procedures. Three sets were defined: a core set: strong evidence for validity, reliability, responsiveness and clinical utility AND recommended by at least two sources; an extended set: strong evidence OR recommended by at least two sources and a supplementary set: some evidence OR recommended by at least one of the sources. Results: In total, 12 measures (with primary focus on stroke) were included, encompassing body function and activity level of the International Classification of Functioning and Health. The core set recommended for clinical practice and research: Fugl-Meyer Assessment of Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT); the extended set recommended for clinical practice and/or clinical research: kinematic measures, Box and Block Test (BBT), Chedoke Arm Hand Activity Inventory (CAHAI), Wolf Motor Function Test (WMFT), Nine Hole Peg Test (NHPT) and ABILHAND; the supplementary set recommended for research or specific occasions: Motricity Index (MI); Chedoke-McMaster Stroke Assessment (CMSA), Stroke Rehabilitation Assessment Movement (STREAM), Frenchay Arm Test (FAT), Motor Assessment Scale (MAS) and body-worn movement sensors. Assessments should be conducted at pre-defined regular intervals by trained personnel. Global measures should be applied within 24 h of hospital admission and upper limb specific measures within 1 week. Conclusions: The CAULIN recommendations for outcome measures and assessment procedures provide a clear, simple, evidence-based three-level structure for upper limb assessment in neurological rehabilitation. Widespread adoption and sustained use will improve quality of clinical practice and facilitate meta-analysis, critical for the advancement of technology-supported neurorehabilitation.The European Network on Robotics for NeuroRehabilitation (Working Group 1) developed these recommendations. Their work was funded by the European Co-Operation in Science and Technology (COST Action TD1006) programme. The funding body had no role in or infuence on the selected approach and synthesis, analysis, and interpretation of data and in writing the manuscript

    Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching

    Get PDF
    Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks (DSBs) during V(D)J recombination in developing lymphocytes and during immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) in peripheral B lymphocytes. We now show that CD21-cre–mediated deletion of the Xrcc4 NHEJ gene in p53-deficient peripheral B cells leads to recurrent surface Ig-negative B lymphomas (“CXP lymphomas”). Remarkably, CXP lymphomas arise from peripheral B cells that had attempted both receptor editing (secondary V[D]J recombination of IgÎș and Igλ light chain genes) and IgH CSR subsequent to Xrcc4 deletion. Correspondingly, CXP tumors frequently harbored a CSR-based reciprocal chromosomal translocation that fused IgH to c-myc, as well as large chromosomal deletions or translocations involving IgÎș or Igλ, with the latter fusing Igλ to oncogenes or to IgH. Our findings reveal peripheral B cells that have undergone both editing and CSR and show them to be common progenitors of CXP tumors. Our studies also reveal developmental stage-specific mechanisms of c-myc activation via IgH locus translocations. Thus, Xrcc4/p53-deficient pro–B lymphomas routinely activate c-myc by gene amplification, whereas Xrcc4/p53-deficient peripheral B cell lymphomas routinely ectopically activate a single c-myc copy

    The pion-three-nucleon problem with two-cluster connected-kernel equations

    Get PDF
    It is found that the coupled piNNN-NNN system breaks into fragments in a nontrivial way. Assuming the particles as distinguishable, there are indeed four modes of fragmentation into two clusters, while in the standard three-body problem there are three possible two-cluster partitions and conversely the four-body problem has seven different possibilities. It is shown how to formulate the pion-three-nucleon collision problem through the integral-equation approach by taking into account the proper fragmentation of the system. The final result does not depend on the assumption of separability of the two-body t-matrices. Then, the quasiparticle method a' la Grassberger-Sandhas is applied and effective two-cluster connected-kernel equations are obtained. The corresponding bound-state problem is also formulated, and the resulting homogeneous equation provides a new approach which generalizes the commonly used techniques to describe the three-nucleon bound-state problem, where the meson degrees of freedom are usually suppressed.Comment: 20 pages, REVTeX, with 3 COLOR figures (PostScript
    • 

    corecore